Sharing practice: OEM prescribed maintenance Peter Kohler / Andy Webb #### Overview - 1. OEM introduction - 2. OEM maintenance: pros and cons - 3. OEM maintenance: key message - 4. Tools to help - 5. Example - 6. Takeaway thoughts - 7. Summary #### What is an OEM? Types of Original Equipment Manufacturer Prime system Commercial off-the-shelf Component All have responsibilities under *Work Health and Safety* legislation and the *Rail Safety National Law* ### OEM maintenance: pros & cons #### **Pros** Provides a quick basis for building a maintenance plan Supports basic reliability performance #### Cons May not consider failure consequence: may not address *safety* May not consider the asset's environment Not necessarily efficient for the user ## OEM maintenance: key message #### Good basis but... - Continual improvement drives you to review initial maintenance plan - You need to understand failure consequence on your railway to ensure safety Source: Asset Management concept model, Asset Management Council # Moving forward - Tools already exist to help us - FMECA: - a systematic way of assessing failure modes and their consequences - enables the build up of effective maintenance tasks to address known failure modes - IEC 60812: Application guide – Failure mode effects analysis # FMECA process overview Simplified diagram: refer to Sharing practice paper for more detail of the FMECA process ## Sample FMECA – track circuit ## Develop a FMECA (simplified example) #### Scenario 1: Consider the track circuit tail cable – **on low use sidings** | Function | Sample failure mode | Sample failure effect | Failure
Rate | Sample
consequence | Criticality | Sample maintenance tasks | |---|---|--|-----------------|--|-------------|--| | To connect the rails electrically to the train detector (track relay) | Fails to connect electrically (eg open circuit) | Track circuit
shows
occupied
when clear | Low | Minor delay
to traffic
Manual
operation
mode | Low | Analyse causes, leading to a task frequency for: Examine cable connections Examine cable for damage Ensure cable securely fastened | | | Fails to isolate
electrical
circuit | Track circuit
shows
occupied
when clear | Low | Minor delay
to traffic
Manual
operation
mode | Low | Analyse causes, leading to a task frequency for: Examine cables for damage Insulation test cables | | | | Track circuit
shows clear
when
occupied | Very low | Slow speed collision | Medium | Analyse causes, leading to a task frequency for: Examine cables for damage Insulation test cables | ## Develop a FMECA (simplified example) #### Scenario 2: Consider the track circuit tail cable – on a high use passenger main line | Function | Sample failure
mode | Sample failure effect | Failure
Rate | Sample
consequence | Criticality | Sample maintenance tasks | |--|---|--|--------------------------|--|--------------------------|--| | To transfer electrical energy from the rails to the train detector (track relay) | Fails to
transfer
electrical
energy (eg
open circuit) | Track circuit
shows
occupied
when clear | Low
Medium | Minor Delay
to traffic
Manual
operation
mode | Low
Medium | Analyse causes, leading to an Increased task freq for: Examine cable connections Examine cable for damage Ensure cable securely fastened | | | Fails to isolate
electrical
circuit | Track circuit
shows
occupied
when clear | Low
Medium | Minor Delay
to traffic
Manual
operation
mode | Low
Medium | Analyse causes, leading to an increased frequency for: Examine cables for damage Insulation test cables | | | | Track circuit
shows clear
when
occupied | Very Low | Slow speed collision Passenger train collision, potential fatalities | Medium
Very High | Analyse causes, leading to an increased frequency for: Examine cables for damage Insulation test cables | ### **Takeaways** - Do you understand how your assets fail? - Do you understand the consequence of failure modes? - Can you improve your knowledge of how assets fail? - Are there systems for recording defects and failures? - Do you know your critical assets? - Will you try a FMECA on your critical assets? - How can today assist you in maintenance planning? # Summary OEM may provide a good initial base for planning maintenance but ... #### Safe assets need you to: Understand how they fail on your railway Understand failure consequences on your railway Plan maintenance activities to mitigate against asset failure