

Sharing practice: OEM prescribed maintenance

Peter Kohler / Andy Webb

Overview

- 1. OEM introduction
- 2. OEM maintenance: pros and cons
- 3. OEM maintenance: key message
- 4. Tools to help
- 5. Example
- 6. Takeaway thoughts
- 7. Summary

What is an OEM?

Types of
Original
Equipment
Manufacturer

Prime system

Commercial off-the-shelf

Component

All have responsibilities under *Work Health and Safety* legislation and the *Rail Safety National Law*

OEM maintenance: pros & cons

Pros

Provides a quick basis for building a maintenance plan

Supports basic reliability performance

Cons

May not consider failure consequence: may not address *safety*

May not consider the asset's environment

Not necessarily efficient for the user

OEM maintenance: key message

Good basis but...

- Continual improvement drives you to review initial maintenance plan
- You need to understand failure consequence on your railway to ensure safety

Source: Asset Management concept model, Asset Management Council

Moving forward

- Tools already exist to help us
- FMECA:
 - a systematic way of assessing failure modes and their consequences
 - enables the build up of effective maintenance tasks to address known failure modes
 - IEC 60812: Application guide – Failure mode effects analysis

FMECA process overview

Simplified diagram: refer to Sharing practice paper for more detail of the FMECA process

Sample FMECA – track circuit

Develop a FMECA (simplified example)

Scenario 1: Consider the track circuit tail cable – **on low use sidings**

Function	Sample failure mode	Sample failure effect	Failure Rate	Sample consequence	Criticality	Sample maintenance tasks
To connect the rails electrically to the train detector (track relay)	Fails to connect electrically (eg open circuit)	Track circuit shows occupied when clear	Low	Minor delay to traffic Manual operation mode	Low	Analyse causes, leading to a task frequency for: Examine cable connections Examine cable for damage Ensure cable securely fastened
	Fails to isolate electrical circuit	Track circuit shows occupied when clear	Low	Minor delay to traffic Manual operation mode	Low	Analyse causes, leading to a task frequency for: Examine cables for damage Insulation test cables
		Track circuit shows clear when occupied	Very low	Slow speed collision	Medium	Analyse causes, leading to a task frequency for: Examine cables for damage Insulation test cables

Develop a FMECA (simplified example)

Scenario 2: Consider the track circuit tail cable – on a high use passenger main line

Function	Sample failure mode	Sample failure effect	Failure Rate	Sample consequence	Criticality	Sample maintenance tasks
To transfer electrical energy from the rails to the train detector (track relay)	Fails to transfer electrical energy (eg open circuit)	Track circuit shows occupied when clear	Low Medium	Minor Delay to traffic Manual operation mode	Low Medium	Analyse causes, leading to an Increased task freq for: Examine cable connections Examine cable for damage Ensure cable securely fastened
	Fails to isolate electrical circuit	Track circuit shows occupied when clear	Low Medium	Minor Delay to traffic Manual operation mode	Low Medium	Analyse causes, leading to an increased frequency for: Examine cables for damage Insulation test cables
		Track circuit shows clear when occupied	Very Low	Slow speed collision Passenger train collision, potential fatalities	Medium Very High	Analyse causes, leading to an increased frequency for: Examine cables for damage Insulation test cables

Takeaways

- Do you understand how your assets fail?
- Do you understand the consequence of failure modes?
- Can you improve your knowledge of how assets fail?
- Are there systems for recording defects and failures?
- Do you know your critical assets?
- Will you try a FMECA on your critical assets?
- How can today assist you in maintenance planning?

Summary

OEM may provide a good initial base for planning maintenance but ...

Safe assets need you to:

Understand how they fail on your railway

Understand failure consequences on your railway

Plan maintenance activities to mitigate against asset failure

